3.7.49 \(\int \frac {\sqrt {c+d x}}{1+x^2} \, dx\) [649]

Optimal. Leaf size=316 \[ \frac {d \tanh ^{-1}\left (\frac {\sqrt {c+\sqrt {c^2+d^2}}-\sqrt {2} \sqrt {c+d x}}{\sqrt {c-\sqrt {c^2+d^2}}}\right )}{\sqrt {2} \sqrt {c-\sqrt {c^2+d^2}}}-\frac {d \tanh ^{-1}\left (\frac {\sqrt {c+\sqrt {c^2+d^2}}+\sqrt {2} \sqrt {c+d x}}{\sqrt {c-\sqrt {c^2+d^2}}}\right )}{\sqrt {2} \sqrt {c-\sqrt {c^2+d^2}}}+\frac {d \log \left (c+\sqrt {c^2+d^2}+d x-\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} \sqrt {c+d x}\right )}{2 \sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}}-\frac {d \log \left (c+\sqrt {c^2+d^2}+d x+\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} \sqrt {c+d x}\right )}{2 \sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}} \]

[Out]

1/2*d*arctanh((-2^(1/2)*(d*x+c)^(1/2)+(c+(c^2+d^2)^(1/2))^(1/2))/(c-(c^2+d^2)^(1/2))^(1/2))*2^(1/2)/(c-(c^2+d^
2)^(1/2))^(1/2)-1/2*d*arctanh((2^(1/2)*(d*x+c)^(1/2)+(c+(c^2+d^2)^(1/2))^(1/2))/(c-(c^2+d^2)^(1/2))^(1/2))*2^(
1/2)/(c-(c^2+d^2)^(1/2))^(1/2)+1/4*d*ln(c+d*x+(c^2+d^2)^(1/2)-2^(1/2)*(d*x+c)^(1/2)*(c+(c^2+d^2)^(1/2))^(1/2))
*2^(1/2)/(c+(c^2+d^2)^(1/2))^(1/2)-1/4*d*ln(c+d*x+(c^2+d^2)^(1/2)+2^(1/2)*(d*x+c)^(1/2)*(c+(c^2+d^2)^(1/2))^(1
/2))*2^(1/2)/(c+(c^2+d^2)^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.34, antiderivative size = 316, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.353, Rules used = {714, 1143, 648, 632, 212, 642} \begin {gather*} \frac {d \log \left (-\sqrt {2} \sqrt {\sqrt {c^2+d^2}+c} \sqrt {c+d x}+\sqrt {c^2+d^2}+c+d x\right )}{2 \sqrt {2} \sqrt {\sqrt {c^2+d^2}+c}}-\frac {d \log \left (\sqrt {2} \sqrt {\sqrt {c^2+d^2}+c} \sqrt {c+d x}+\sqrt {c^2+d^2}+c+d x\right )}{2 \sqrt {2} \sqrt {\sqrt {c^2+d^2}+c}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c^2+d^2}+c}-\sqrt {2} \sqrt {c+d x}}{\sqrt {c-\sqrt {c^2+d^2}}}\right )}{\sqrt {2} \sqrt {c-\sqrt {c^2+d^2}}}-\frac {d \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c^2+d^2}+c}+\sqrt {2} \sqrt {c+d x}}{\sqrt {c-\sqrt {c^2+d^2}}}\right )}{\sqrt {2} \sqrt {c-\sqrt {c^2+d^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x]/(1 + x^2),x]

[Out]

(d*ArcTanh[(Sqrt[c + Sqrt[c^2 + d^2]] - Sqrt[2]*Sqrt[c + d*x])/Sqrt[c - Sqrt[c^2 + d^2]]])/(Sqrt[2]*Sqrt[c - S
qrt[c^2 + d^2]]) - (d*ArcTanh[(Sqrt[c + Sqrt[c^2 + d^2]] + Sqrt[2]*Sqrt[c + d*x])/Sqrt[c - Sqrt[c^2 + d^2]]])/
(Sqrt[2]*Sqrt[c - Sqrt[c^2 + d^2]]) + (d*Log[c + Sqrt[c^2 + d^2] + d*x - Sqrt[2]*Sqrt[c + Sqrt[c^2 + d^2]]*Sqr
t[c + d*x]])/(2*Sqrt[2]*Sqrt[c + Sqrt[c^2 + d^2]]) - (d*Log[c + Sqrt[c^2 + d^2] + d*x + Sqrt[2]*Sqrt[c + Sqrt[
c^2 + d^2]]*Sqrt[c + d*x]])/(2*Sqrt[2]*Sqrt[c + Sqrt[c^2 + d^2]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 714

Int[Sqrt[(d_) + (e_.)*(x_)]/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[2*e, Subst[Int[x^2/(c*d^2 + a*e^2 - 2*c*d
*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0]

Rule 1143

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/
c, 2]}, Dist[1/(2*c*r), Int[x^(m - 1)/(q - r*x + x^2), x], x] - Dist[1/(2*c*r), Int[x^(m - 1)/(q + r*x + x^2),
 x], x]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 1] && LtQ[m, 3] && NegQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {\sqrt {c+d x}}{1+x^2} \, dx &=(2 d) \text {Subst}\left (\int \frac {x^2}{c^2+d^2-2 c x^2+x^4} \, dx,x,\sqrt {c+d x}\right )\\ &=\frac {d \text {Subst}\left (\int \frac {x}{\sqrt {c^2+d^2}-\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} x+x^2} \, dx,x,\sqrt {c+d x}\right )}{\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}}-\frac {d \text {Subst}\left (\int \frac {x}{\sqrt {c^2+d^2}+\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} x+x^2} \, dx,x,\sqrt {c+d x}\right )}{\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}}\\ &=\frac {1}{2} d \text {Subst}\left (\int \frac {1}{\sqrt {c^2+d^2}-\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} x+x^2} \, dx,x,\sqrt {c+d x}\right )+\frac {1}{2} d \text {Subst}\left (\int \frac {1}{\sqrt {c^2+d^2}+\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} x+x^2} \, dx,x,\sqrt {c+d x}\right )+\frac {d \text {Subst}\left (\int \frac {-\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}+2 x}{\sqrt {c^2+d^2}-\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} x+x^2} \, dx,x,\sqrt {c+d x}\right )}{2 \sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}}-\frac {d \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}+2 x}{\sqrt {c^2+d^2}+\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} x+x^2} \, dx,x,\sqrt {c+d x}\right )}{2 \sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}}\\ &=\frac {d \log \left (c+\sqrt {c^2+d^2}+d x-\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} \sqrt {c+d x}\right )}{2 \sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}}-\frac {d \log \left (c+\sqrt {c^2+d^2}+d x+\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} \sqrt {c+d x}\right )}{2 \sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}}-d \text {Subst}\left (\int \frac {1}{2 \left (c-\sqrt {c^2+d^2}\right )-x^2} \, dx,x,-\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}+2 \sqrt {c+d x}\right )-d \text {Subst}\left (\int \frac {1}{2 \left (c-\sqrt {c^2+d^2}\right )-x^2} \, dx,x,\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}+2 \sqrt {c+d x}\right )\\ &=\frac {d \tanh ^{-1}\left (\frac {\sqrt {c+\sqrt {c^2+d^2}}-\sqrt {2} \sqrt {c+d x}}{\sqrt {c-\sqrt {c^2+d^2}}}\right )}{\sqrt {2} \sqrt {c-\sqrt {c^2+d^2}}}-\frac {d \tanh ^{-1}\left (\frac {\sqrt {c+\sqrt {c^2+d^2}}+\sqrt {2} \sqrt {c+d x}}{\sqrt {c-\sqrt {c^2+d^2}}}\right )}{\sqrt {2} \sqrt {c-\sqrt {c^2+d^2}}}+\frac {d \log \left (c+\sqrt {c^2+d^2}+d x-\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} \sqrt {c+d x}\right )}{2 \sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}}-\frac {d \log \left (c+\sqrt {c^2+d^2}+d x+\sqrt {2} \sqrt {c+\sqrt {c^2+d^2}} \sqrt {c+d x}\right )}{2 \sqrt {2} \sqrt {c+\sqrt {c^2+d^2}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.11, size = 82, normalized size = 0.26 \begin {gather*} i \left (\sqrt {-c-i d} \tan ^{-1}\left (\frac {\sqrt {c+d x}}{\sqrt {-c-i d}}\right )-\sqrt {-c+i d} \tan ^{-1}\left (\frac {\sqrt {c+d x}}{\sqrt {-c+i d}}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x]/(1 + x^2),x]

[Out]

I*(Sqrt[-c - I*d]*ArcTan[Sqrt[c + d*x]/Sqrt[-c - I*d]] - Sqrt[-c + I*d]*ArcTan[Sqrt[c + d*x]/Sqrt[-c + I*d]])

________________________________________________________________________________________

Maple [A]
time = 0.44, size = 330, normalized size = 1.04

method result size
derivativedivides \(2 d \left (\frac {\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}\, \left (\sqrt {c^{2}+d^{2}}-c \right ) \left (\frac {\ln \left (\sqrt {d x +c}\, \sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}-d x -c -\sqrt {c^{2}+d^{2}}\right )}{2}-\frac {\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}\, \arctan \left (\frac {\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}-2 \sqrt {d x +c}}{\sqrt {2 \sqrt {c^{2}+d^{2}}-2 c}}\right )}{\sqrt {2 \sqrt {c^{2}+d^{2}}-2 c}}\right )}{4 d^{2}}-\frac {\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}\, \left (\sqrt {c^{2}+d^{2}}-c \right ) \left (\frac {\ln \left (d x +c +\sqrt {d x +c}\, \sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}+\sqrt {c^{2}+d^{2}}\right )}{2}-\frac {\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}\, \arctan \left (\frac {2 \sqrt {d x +c}+\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}}{\sqrt {2 \sqrt {c^{2}+d^{2}}-2 c}}\right )}{\sqrt {2 \sqrt {c^{2}+d^{2}}-2 c}}\right )}{4 d^{2}}\right )\) \(330\)
default \(2 d \left (\frac {\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}\, \left (\sqrt {c^{2}+d^{2}}-c \right ) \left (\frac {\ln \left (\sqrt {d x +c}\, \sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}-d x -c -\sqrt {c^{2}+d^{2}}\right )}{2}-\frac {\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}\, \arctan \left (\frac {\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}-2 \sqrt {d x +c}}{\sqrt {2 \sqrt {c^{2}+d^{2}}-2 c}}\right )}{\sqrt {2 \sqrt {c^{2}+d^{2}}-2 c}}\right )}{4 d^{2}}-\frac {\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}\, \left (\sqrt {c^{2}+d^{2}}-c \right ) \left (\frac {\ln \left (d x +c +\sqrt {d x +c}\, \sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}+\sqrt {c^{2}+d^{2}}\right )}{2}-\frac {\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}\, \arctan \left (\frac {2 \sqrt {d x +c}+\sqrt {2 \sqrt {c^{2}+d^{2}}+2 c}}{\sqrt {2 \sqrt {c^{2}+d^{2}}-2 c}}\right )}{\sqrt {2 \sqrt {c^{2}+d^{2}}-2 c}}\right )}{4 d^{2}}\right )\) \(330\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(1/2)/(x^2+1),x,method=_RETURNVERBOSE)

[Out]

2*d*(1/4*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*((c^2+d^2)^(1/2)-c)/d^2*(1/2*ln((d*x+c)^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(
1/2)-d*x-c-(c^2+d^2)^(1/2))-(2*(c^2+d^2)^(1/2)+2*c)^(1/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(
1/2)+2*c)^(1/2)-2*(d*x+c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)))-1/4*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*((c^2+d^2)^
(1/2)-c)/d^2*(1/2*ln(d*x+c+(d*x+c)^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))-(2*(c^2+d^2)^(1/2)+2*c
)^(1/2)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(d*x+c)^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2
)-2*c)^(1/2))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/(x^2+1),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x + c)/(x^2 + 1), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 925 vs. \(2 (247) = 494\).
time = 3.26, size = 925, normalized size = 2.93 \begin {gather*} -\frac {4 \, \sqrt {2} {\left (c^{2} + d^{2}\right )}^{\frac {3}{4}} \sqrt {d^{2}} \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} \arctan \left (-\frac {\sqrt {2} {\left (c^{2} + d^{2}\right )}^{\frac {3}{4}} \sqrt {d^{2}} \sqrt {d x + c} d \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} - \sqrt {2} {\left (c^{2} + d^{2}\right )}^{\frac {3}{4}} \sqrt {d^{2}} \sqrt {\frac {\sqrt {2} {\left (c^{2} + d^{2}\right )}^{\frac {3}{4}} \sqrt {d x + c} d^{3} \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} + c^{3} d^{2} + c d^{4} + {\left (c^{2} d^{3} + d^{5}\right )} x + {\left (c^{2} d^{2} + d^{4}\right )} \sqrt {c^{2} + d^{2}}}{c^{2} + d^{2}}} \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} + {\left (c^{2} + d^{2}\right )}^{\frac {3}{2}} \sqrt {d^{2}} + {\left (c^{3} + c d^{2}\right )} \sqrt {d^{2}}}{c^{2} d^{2} + d^{4}}\right ) + 4 \, \sqrt {2} {\left (c^{2} + d^{2}\right )}^{\frac {3}{4}} \sqrt {d^{2}} \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} \arctan \left (-\frac {\sqrt {2} {\left (c^{2} + d^{2}\right )}^{\frac {3}{4}} \sqrt {d^{2}} \sqrt {d x + c} d \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} - \sqrt {2} {\left (c^{2} + d^{2}\right )}^{\frac {3}{4}} \sqrt {d^{2}} \sqrt {-\frac {\sqrt {2} {\left (c^{2} + d^{2}\right )}^{\frac {3}{4}} \sqrt {d x + c} d^{3} \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} - c^{3} d^{2} - c d^{4} - {\left (c^{2} d^{3} + d^{5}\right )} x - {\left (c^{2} d^{2} + d^{4}\right )} \sqrt {c^{2} + d^{2}}}{c^{2} + d^{2}}} \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} - {\left (c^{2} + d^{2}\right )}^{\frac {3}{2}} \sqrt {d^{2}} - {\left (c^{3} + c d^{2}\right )} \sqrt {d^{2}}}{c^{2} d^{2} + d^{4}}\right ) + \sqrt {2} {\left (c^{2} + d^{2} - \sqrt {c^{2} + d^{2}} c\right )} {\left (c^{2} + d^{2}\right )}^{\frac {1}{4}} \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} \log \left (\frac {\sqrt {2} {\left (c^{2} + d^{2}\right )}^{\frac {3}{4}} \sqrt {d x + c} d^{3} \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} + c^{3} d^{2} + c d^{4} + {\left (c^{2} d^{3} + d^{5}\right )} x + {\left (c^{2} d^{2} + d^{4}\right )} \sqrt {c^{2} + d^{2}}}{c^{2} + d^{2}}\right ) - \sqrt {2} {\left (c^{2} + d^{2} - \sqrt {c^{2} + d^{2}} c\right )} {\left (c^{2} + d^{2}\right )}^{\frac {1}{4}} \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} \log \left (-\frac {\sqrt {2} {\left (c^{2} + d^{2}\right )}^{\frac {3}{4}} \sqrt {d x + c} d^{3} \sqrt {\frac {c^{2} + d^{2} + \sqrt {c^{2} + d^{2}} c}{d^{2}}} - c^{3} d^{2} - c d^{4} - {\left (c^{2} d^{3} + d^{5}\right )} x - {\left (c^{2} d^{2} + d^{4}\right )} \sqrt {c^{2} + d^{2}}}{c^{2} + d^{2}}\right )}{4 \, {\left (c^{2} + d^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/(x^2+1),x, algorithm="fricas")

[Out]

-1/4*(4*sqrt(2)*(c^2 + d^2)^(3/4)*sqrt(d^2)*sqrt((c^2 + d^2 + sqrt(c^2 + d^2)*c)/d^2)*arctan(-(sqrt(2)*(c^2 +
d^2)^(3/4)*sqrt(d^2)*sqrt(d*x + c)*d*sqrt((c^2 + d^2 + sqrt(c^2 + d^2)*c)/d^2) - sqrt(2)*(c^2 + d^2)^(3/4)*sqr
t(d^2)*sqrt((sqrt(2)*(c^2 + d^2)^(3/4)*sqrt(d*x + c)*d^3*sqrt((c^2 + d^2 + sqrt(c^2 + d^2)*c)/d^2) + c^3*d^2 +
 c*d^4 + (c^2*d^3 + d^5)*x + (c^2*d^2 + d^4)*sqrt(c^2 + d^2))/(c^2 + d^2))*sqrt((c^2 + d^2 + sqrt(c^2 + d^2)*c
)/d^2) + (c^2 + d^2)^(3/2)*sqrt(d^2) + (c^3 + c*d^2)*sqrt(d^2))/(c^2*d^2 + d^4)) + 4*sqrt(2)*(c^2 + d^2)^(3/4)
*sqrt(d^2)*sqrt((c^2 + d^2 + sqrt(c^2 + d^2)*c)/d^2)*arctan(-(sqrt(2)*(c^2 + d^2)^(3/4)*sqrt(d^2)*sqrt(d*x + c
)*d*sqrt((c^2 + d^2 + sqrt(c^2 + d^2)*c)/d^2) - sqrt(2)*(c^2 + d^2)^(3/4)*sqrt(d^2)*sqrt(-(sqrt(2)*(c^2 + d^2)
^(3/4)*sqrt(d*x + c)*d^3*sqrt((c^2 + d^2 + sqrt(c^2 + d^2)*c)/d^2) - c^3*d^2 - c*d^4 - (c^2*d^3 + d^5)*x - (c^
2*d^2 + d^4)*sqrt(c^2 + d^2))/(c^2 + d^2))*sqrt((c^2 + d^2 + sqrt(c^2 + d^2)*c)/d^2) - (c^2 + d^2)^(3/2)*sqrt(
d^2) - (c^3 + c*d^2)*sqrt(d^2))/(c^2*d^2 + d^4)) + sqrt(2)*(c^2 + d^2 - sqrt(c^2 + d^2)*c)*(c^2 + d^2)^(1/4)*s
qrt((c^2 + d^2 + sqrt(c^2 + d^2)*c)/d^2)*log((sqrt(2)*(c^2 + d^2)^(3/4)*sqrt(d*x + c)*d^3*sqrt((c^2 + d^2 + sq
rt(c^2 + d^2)*c)/d^2) + c^3*d^2 + c*d^4 + (c^2*d^3 + d^5)*x + (c^2*d^2 + d^4)*sqrt(c^2 + d^2))/(c^2 + d^2)) -
sqrt(2)*(c^2 + d^2 - sqrt(c^2 + d^2)*c)*(c^2 + d^2)^(1/4)*sqrt((c^2 + d^2 + sqrt(c^2 + d^2)*c)/d^2)*log(-(sqrt
(2)*(c^2 + d^2)^(3/4)*sqrt(d*x + c)*d^3*sqrt((c^2 + d^2 + sqrt(c^2 + d^2)*c)/d^2) - c^3*d^2 - c*d^4 - (c^2*d^3
 + d^5)*x - (c^2*d^2 + d^4)*sqrt(c^2 + d^2))/(c^2 + d^2)))/(c^2 + d^2)

________________________________________________________________________________________

Sympy [A]
time = 2.22, size = 53, normalized size = 0.17 \begin {gather*} 2 d \operatorname {RootSum} {\left (256 t^{4} d^{4} + 32 t^{2} c d^{2} + c^{2} + d^{2}, \left ( t \mapsto t \log {\left (64 t^{3} d^{2} + 4 t c + \sqrt {c + d x} \right )} \right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(1/2)/(x**2+1),x)

[Out]

2*d*RootSum(256*_t**4*d**4 + 32*_t**2*c*d**2 + c**2 + d**2, Lambda(_t, _t*log(64*_t**3*d**2 + 4*_t*c + sqrt(c
+ d*x))))

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/(x^2+1),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [B]
time = 0.16, size = 133, normalized size = 0.42 \begin {gather*} -\mathrm {atan}\left (\frac {2\,c\,\sqrt {-\frac {c}{4}-\frac {d\,1{}\mathrm {i}}{4}}\,\sqrt {c+d\,x}-d\,\sqrt {-\frac {c}{4}-\frac {d\,1{}\mathrm {i}}{4}}\,\sqrt {c+d\,x}\,2{}\mathrm {i}}{c^2+d^2}\right )\,\sqrt {-\frac {c}{4}-\frac {d\,1{}\mathrm {i}}{4}}\,2{}\mathrm {i}+\mathrm {atan}\left (\frac {2\,c\,\sqrt {-\frac {c}{4}+\frac {d\,1{}\mathrm {i}}{4}}\,\sqrt {c+d\,x}+d\,\sqrt {-\frac {c}{4}+\frac {d\,1{}\mathrm {i}}{4}}\,\sqrt {c+d\,x}\,2{}\mathrm {i}}{c^2+d^2}\right )\,\sqrt {-\frac {c}{4}+\frac {d\,1{}\mathrm {i}}{4}}\,2{}\mathrm {i} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)^(1/2)/(x^2 + 1),x)

[Out]

atan((2*c*((d*1i)/4 - c/4)^(1/2)*(c + d*x)^(1/2) + d*((d*1i)/4 - c/4)^(1/2)*(c + d*x)^(1/2)*2i)/(c^2 + d^2))*(
(d*1i)/4 - c/4)^(1/2)*2i - atan((2*c*(- c/4 - (d*1i)/4)^(1/2)*(c + d*x)^(1/2) - d*(- c/4 - (d*1i)/4)^(1/2)*(c
+ d*x)^(1/2)*2i)/(c^2 + d^2))*(- c/4 - (d*1i)/4)^(1/2)*2i

________________________________________________________________________________________